Ensure that packages tm, tm.plugin.tags and tm.plugin.webmining are installed.
install.packages("tm.plugin.tags", repos = "http://datacube.wu.ac.at", type = "source")
Include the necessary librarieslibrary(tm)
library(tm.plugin.webmining)
library(tm.plugin.tags)
For a given stock, let us say TCS in our case, we can retrive the news associated with them from google and yahoostock <- "TCS"
Googlecorpus <- WebCorpus(GoogleFinanceSource(stock))
Yahoocorpus <- WebCorpus(YahooFinanceSource(stock))
Create a combined corpus from both the sourcescorpus <- c(Googlecorpus,Yahoocorpus)
We extract the heading from all the news articles associated with the stock TCS. We filter them to include only those headings which contains the word TCS# Get all the headings
headings <- sapply(corpus,FUN=function(x){attr(x,"Heading")})
headings.filtered <- headings[grepl(stock,headings)]
We do a similar operation for the contents of the news article# Get all the descriptions
descriptions <- sapply(corpus,FUN=function(x){attr(x,"Description")})
descriptions.filtered <- descriptions[grepl(stock,descriptions)]
We get the dictionary of positive and negative words and stem them.control <- list(stemming=TRUE)
neg <- tm_get_tags("Negativ",control=control)
pos <- tm_get_tags("Positiv",control=control)
Now we define a function to give us a sentiment score# Sentiment mining
score <- function(text,pos,neg) {
corpu <- Corpus(VectorSource(text))
termfreq_control <- list(removePunctuation = TRUE,
stemming=TRUE, stopwords=TRUE, wordLengths=c(2,100))
dtm <-DocumentTermMatrix(corpu, control=termfreq_control)
# term frequency matrix
tfidf <- weightTfIdf(dtm)
# identify positive terms
which_pos <- Terms(dtm) %in% pos
# identify negative terms
which_neg <- Terms(dtm) %in% neg
# number of positive terms in each row
score_pos <- colSums(as.data.frame(t(as.matrix(dtm[, which_pos]))))
# number of negative terms in each row
score_neg <- colSums(as.data.frame(t(as.matrix(dtm[, which_neg]))))
polarity <- (score_pos - score_neg) / (score_pos+score_neg)
return(polarity)
}
The function takes as input a corpus and set of positive and negative sentiment words.
Let us decode the function
It creates a term document matrix of the corpus. It ignores punctuations, stopwords and words of length 1. TFIDF score is used in the term document matrixcorpu <- Corpus(VectorSource(text))
termfreq_control <- list(removePunctuation = TRUE,
stemming=TRUE, stopwords=TRUE, wordLengths=c(2,100))
dtm <-DocumentTermMatrix(corpu, control=termfreq_control)
# term frequency matrix
tfidf <- weightTfIdf(dtm)
It creates a list of postive and negative terms present in the input corpus.# identify positive terms
which_pos <- Terms(dtm) %in% pos
# identify negative terms
which_neg <- Terms(dtm) %in% neg
A weighted sum of positive and negative words are calculated.# number of positive terms in each row
score_pos <- colSums(as.data.frame(t(as.matrix(dtm[, which_pos]))))
# number of negative terms in each row
score_neg <- colSums(as.data.frame(t(as.matrix(dtm[, which_neg]))))
Finally polarity is a ration of postive and negative scores.polarity <- (score_pos - score_neg) / (score_pos+score_neg)
Thus using this function we can calucate the polarity score of any document corpus.descriptions.polarity <- score(descriptions.filtered,pos,neg)
This polarity score when plotted against time gives an idea of how the stock sentiment has moved over time. This movement can be later correlated with volume change over time.
No comments:
Post a Comment